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Abstract. This paper studies what can be computed by using proba-
bilistic local interactions with agents with a very restricted power in
polylogarithmic parallel time.

It is known that if agents are only finite state (corresponding to the
Population Protocol model by Angluin et al.), then only semilinear
predicates over the global input can be computed. In fact, if the
population starts with a unique leader, these predicates can even be
computed in a polylogarithmic parallel time.

If identifiers are added (corresponding to the Community Protocol
model by Guerraoui and Ruppert), then more global predicates over
the input multiset can be computed. Local predicates over the input
sorted according to the identifiers can also be computed, as long as
the identifiers are ordered. The time of some of those predicates might
require exponential parallel time.

In this paper, we consider what can be computed with Community
Protocol in a polylogarithmic number of parallel interactions. We intro-
duce the class CPPL corresponding to protocols that use O(nlogk n),
for some k, expected interactions to compute their predicates, or equiv-
alently a polylogarithmic number of parallel expected interactions.
We provide some computable protocols, some boundaries of the class,
using the fact that the population can compute its size. We also
prove two impossibility results providing some arguments showing that
local computations are no longer easy: the population does not have
the time to compare a linear number of consecutive identifiers. The
Linearly Local languages, such that the rational language (ab)*, are
not computable.

1 Introduction

Population Protocols, introduced by Angluin et al. in 2004 [3], corresponds to
a model of finite states devices with a very restricted memory using pairwise
interactions to communicate and compute a global result. Predicates com-
putable by population protocols have been characterized as being precisely
the semi-linear predicates; i.e. those equivalent to be definable in first-order
Presburger arithmetic [1,3]. Semi-linearity was shown to be sufficient, and
necessary. Those predicates use the global multiset of the input.

Later works on population protocols have concentrated on characterizing
what predicates on the input configurations can be stably computed in different
variants of the models and under various assumptions. Variants of the original



model considered so far include restriction to one-way communications [1],
restriction to particular interaction graphs [2]. Various kinds of fault tolerance
have been studied for population protocols [12], including the search for self-
stabilizing solutions [5]. Some works also include the Probabilistic Population
Protocol model that makes a random scheduling assumption for interactions [4,
13].

Some works extend this model. The edges of the interaction graph may
have states that belong to a constant-size set. This model called the mediated
population protocol is presented in [19]. The addition on Non-Determinism
has been studied in [8]. The research of Self-Stabilization (over some fairness
assumption) has been explored in [5,7]. An extension with sensors offering a
cover-time notion was also studied in [6]. A recent study in [18] also focused
on finding the median agent in an extension of the model called Arithmetic
Population Protocols.

More generally, the population protocol model shares many features with
other models already considered in the literature. In particular, models of
pairwise interactions have been used to study the propagation of diseases [17],
or rumors [11]. In chemistry, the chemical master equation has been justified
using (stochastic) pairwise interactions between the finitely many molecules
[15,20]. The variations over the LOCAL model [14] can be seen as a restriction
over the interactions (using a graph) but with a set of possible improvements
in agents’ capacities.

Agents have been endowed with even stronger tools in different models. The
passively mobile protocols introduced by Chatzigiannakis et al. [10] constitutes
a generalization of the population protocol model where finite state agents are
replaced by agents that correspond to arbitrary Turing machines with O(S(n))
space per-agent, where n is the number of agents. As agents remain initially
anonymous, only functions over the global input can be computed.

The community protocols introduced by Guerraoui and Ruppert [16] are
closer to the original population protocol model, assuming a prior: agents with
individual very restricted computational capabilities. In this model, agents are
no longer anonymous: each agent has a unique identifier and can only remember
O(1) other agent identifiers. Guerraoui and Ruppert [16] using results about
the so-called storage modification machines [21], proved that such protocols
simulate Turing machines: Predicates computed by this model with n agents
are precisely the predicates in NSPACE(nlogn). The sorted input symbols
according to the identifiers can be analysed locally by the protocols to compute
the right output. In [9], the possibility that identifiers are no longer unique is
explored through the homonym population protocols model.

Motivation

Angluin et al., in [4], prove that any computable predicate by a Population
Protocol can be computed in O(n log® n) expected interactions, as long as
there is a unique leader at the beginning. This article includes some arguments
leading to the idea that there might exist protocols computing a leader election
in O(nlogn) expected interactions. Doty et al. proved in [13] that there cannot
be a protocol computing a leader so fast. They proved that a protocol needs



2(n?) expected interactions to get to a configuration with a single leader, if
every agent is a potential candidate at the beginning.

The exact characterization of what can be computed by populations hav-
ing unique leaders gave the motivation to look to what can be computed in
O(nlog"” n) expected interactions (for any k > 0), with the Community Proto-
cols model [16]. We consider, as in [4], that each pair of agents (or identifiers)
have the same probability to be chosen at each step of a computation. In [4], it
is considered that dividing the number of expected interaction by n provides
the expected number of parallel interactions.

Community protocols can be seen as interactions controlled by devices in a
social group. For example, identifiers can correspond to phone numbers, and
the devices can be applications on smartphones. In this vision, it seems intuitive
to consider that a group of individuals do not want to stay too long together
to compute some global information. Sorting a group of people depending
on phone numbers to look for patterns does not seem intuitive, and hence useful.

This paper introduces the class CPPL, corresponding to what can be com-
puted with Community Protocols in a polylogarithmic number of expected
parallel interactions (which corresponds to a number of expected interactions
bounded above by nlog” n for some k), or a polylogarithmic number of epi-
demics or broadcasts. We introduce some protocols, proving that the size of the
population (or some subset) can be computed in some sense to be explained.

We then show the weakness of this model based on the fact that local
computation cannot be performed over the whole input. More precisely, we
prove that only a polylogarithmic number of agents can find the next or
previous identifier to their own. We also introduce the class of linearly local
languages, containing the rational language (ab)*, and prove that none of its
elements cannot be computed.

We finish with some comparisons with other computational classes. We
introduce a class of Turing Machine trying to match the expressive power of
CPPL. Those machines use a polylogarithmic space of computation, and is
able to use the tools we found. This machine has access to global informations
of the input, but can focus locally only on a polylogarithmic number of regions
of the input.

The paper is organized as follows: Section 2 provides the Community
Protocol model introduced in [16] and includes some examples. Section 3
provides some elements and results about fast computing with Population
Protocols from [4]. Section 4 explains a way to keep the fairness of our protocols
and describes a way to compute the size of the population. Section 5 introduces
the notion of Linearly Local languages and proves that these languages are not
in CPPL. Section 6 provides some complexity bounds on the class CPPL.

2 Model

We present now the model introduced by Guerraoui and Ruppert in [16]:
Agents have unique identifiers, and can store a fixed number of them. Agents
can compare 2 identifiers. We consider that, unlike in [9], agents cannot know
when two identifiers are consecutive.



This model has been proved in [16] to correspond to NSPACE(nlogn),
even when we add a fixed number of byzantine agents. We will not consider
byzantine agents in this paper.

Definition 1 A Community Protocol is given by seven elements (U, B,d, X, 1, w, )
where:

— U 1is the infinite ordered set of identifiers.

B is a finite set of basic states.

— d € N is the number of identifiers that can be remembered by an agent.
X is the finite set of entry symbols.

— ¢ is an input function X — B.

— w 18 an output function B — {True, False}.

— 4§ is a transition function Q* — Q?, with Q = B x U x (U U {_})%.

The set Q = B x U x (UU{_})? of possible states each agents can have is such
that each agent carries three elements: its identifier, its state, and d slots for
identifiers.

The transition function § has two restrictions: Agents cannot store iden-
tifiers that they never heard about, and the transitions must only depend on
relative position of the identifiers in the slots and on the state in B. More
formally, we have:

1. if §(q1,q2) = (q1, ¢5), and id appears in q; or g then id must appear in qq
or in qs.

2. whenever 0(q1,q2) = (¢1,¢5), let uz < ug < -+ < uy be the distinct

identifiers that appear in any of the four states q1,qa, q}, @5 Let v1 < vy <

- < vy be distinct identifiers. If p(q) is the state obtained from q by

replacing all occurrences of each identifier u; by v;, then we require that

3(p(q1), p(a2)) = (p(a1), p(a3))-

We also add the fact that § cannot change the identifier of an agent.

As a convention, we will often call an agent of initial identifier id € U the
agent id. We will sometimes write Idy for the kth identifier present in the
population. An agent with identifier id, in state ¢ and with a list of d identifiers
L =idy, ..., idq will be written in what follows gi4 d, ... id,-

Ezample 1 (Leader FElection). It is possible to compute a Leader Election
(a protocol where all agents start in state L from which we want to reach
a configuration with a single L: the leader), where the leader will be the
agent with the smallest identifier, with O(nlogn) expected interactions. As a
reminder, without identifiers, a protocol needs 2(n?) expected interactions to
elect a leader [13].

Agents will store the identifier of their leader. Here is the protocol, using
above notations for rules:

- B={L,N}.

—d=1

- Y=L, (L)=L and w(L) = w(N) = True.

0 is such that the non-trivial rules (i.e. where at least one state changes)
are:



Lz’dm, Lidlﬂ— — Lida,, Nidb,ida with id, < idy
Lida,, Nidb,idc_> Lida,— Nidb,ida with id, < id,
Liq,, . Nia,id.—Nid,id. Nidy,,id, With id. < id,
Nid, idy Nid,,idg—Nid,.id, Nid,,id, With idy < idg

To determine the speed of this protocol, it suffices to realize that the final
leader actually does an epidemic to spread its identifier (epidemic is defined
in Definition 4). An epidemic takes O(nlogn) expected interactions. Thus,
the leader election can be performed in O(nlogn) expected interactions. The
notions of time and computation are defined in what follows.

Remark 1. To ensure that at some point, a single leader remains in the popu-
lation, Gerraoui et al. uses the notion of Fairness introduced in the Population
Protocols model [3]. As we work here with probabilistic interaction (each pair
of agents has the same probability to interact), the fairness notion will not be
needed.

Definition 2 An Input is a subset of U x X such that any element of U
(the elements of U being called Identifiers) can appear at most once. Inputs
will often be seen as words of X*, as it is possible to sort the input elements
according to the identifiers (recall that we consider that U is ordered). An input
U= uj...U, 18 such that the agent with the smallest identifier has input uy,
the second has input us. . .

The Initial State of an agent assigned with the identifier id and the input s
is (1(s),id, %), where ¢ states for d repetitions of the empty slot _.

A Configuration is a subset of QQ where two elements cannot have the same
first identifier (i.e. two agents must have two distinct identifiers).

A Step is the transition between two configurations C — C’, where only
two agents’ states may change: we apply to the two agents a1 and as the Tule
corresponding to their respective state q1 and qa, i.e. if 8(q1,q2) = (¢}, q5) (also
written by rule q1 g2 — q; ¢5), then in C' the respective states of a; and as
are q; and gy. All other agents have the same state in C and C'.

A configuration has an Output y € {True, False} if for each state b € B
present in the population, w(b) = y. A configuration C' is said Output Stable if
it has an output y and if, for any C' reachable from C, C'" has also the output
Y.

An input w € X* has an Output y € Y if from any reachable configuration
from the initial configuration, we can reach an output stable configuration of
output y. It means that from the input, the protocol will reach with probability
1 an output stable configuration, and there is a single output y reachable. The
input is Accepted if and only if it has output True.

A protocol Computes a set L if, for any input word w € X*, the protocol
provides an output, and the protocol accepts w if and only if w € L. We then
say that L is Computable. We will sometimes say that the protocol is Las
Vegas, as it will always succeed to provide an output with probability 1.

A language is Computed in f(n) Expected Interactions if, for any input w,
the expected number of interactions to reach an output stable configuration is
bounded above by f(Jw|).

The Community Protocols model has been fully characterized:



Theorem 1 ([16]). The decisions problems computable by community proto-
cols correspond ezxactly to the class NSPACE(nlogn).
The set of languages computable by community protocols is NSPACE(nlogn).

Let us introduce now the class we will work with in this paper:

Definition 3 We define the class CPPL as the sets of languages that can be
recognized by a Community Protocol with O(n logk n) expected interactions for
some k € N, where each pair of agents has the same probability to interact at
each moment.

We say that a function f is n-polylog if there exists some k such that we
have f(n) < nlog"n.

3 Fast Computing Known Results

We introduce here some of the elements and results in [4] by Angluin et al..
These elements are on the Population Protocols model. It corresponds to the
case where agents do not have identifiers.

The results are based under the assumption that the population starts with
a unique leader. With community protocols, this assumption will no longer
be used, we will always consider the leader to be the agent with the smallest
identifier (see Example 1).

We introduce the main result and some tools from [4] that will be used in
this paper. We first introduce the notion of epidemics, which will be our main
tool to perform computations. We will quickly talk about the Phase Clock
Protocol that permits to be sure with high probability that an epidemic had
the time to happen. We finish with a complexity result.

3.1 Epidemics

The epidemic is the most important probabilistic protocol. Its purpose is to
spread or gather information. It will permit for example to get an identifier, to
check the state of an agent of a given identifier, to check if there exists some
agent in a given state. ..

The important element with this tool is that an epidemic takes O(nlogn)
expected interactions. Intuitively, in parallel, at each step, the number of agents
aware of the epidemic doubles, using O(logn) parallel steps to spread.

Definition 4 ([4]) An Epidemic Protocol is a protocol who spreads some
information through an epidemic. The purpose is, for a leader, to Infect each
agent. More formally, if 0 represents the not infected state and 1 the infected
one, there is just a non trivial rule:

10=11

Most of the time, it will be a leader who will start a spreading of some
information. The computation will start in the configuration 10"~! (one agent
in state 1, the others being in state 0), where 1 represents the leader.



Proposition 1 ([4]). Let T be the expected number of interactions before an
epidemic protocol starting with a single infected agent infects all the other ones.
For any fized ¢ > 0, there exist positive constants c¢1 and co such that, for
sufficiently large n, with probability at most 1 —n=¢:

cinlogn <T < conlogn

From this theorem, we know that any epidemic protocol will take ©(nlogn)
expected interactions. If we are (almost) sure that more than conlogn interac-
tions occurred, we will be (almost) sure that an epidemic has finished.

To be almost sure that at least conlogn interactions have occurred, [4]
introduced the Phase Clock Protocol. The leader runs a clock between 0 and
m for some m > 0. Each agent tries to store the current time, following some
updating rules. Each time the clock loops (i.e. the leader reaches m and resets
the clock), the population is almost sure that at least conlogn interactions
have occurred.

Proposition 2 ([4]). For any fized c,d; > 0, there exist two constants m
and do such that, for all sufficiently large n, with probability at least 1 —n~¢
the phase clock protocol with parameter m, completes n® rounds, where the
minimum number of interactions in any of the n® rounds is at least dinlogn
and the mazximum is at most donlogn.

This result permits to be sure, with high probability, that for n¢ rounds, in
each round, an epidemic had the time to occur.

3.2 Presburger’s Arithmetic

The main result from [4] is that, if the population starts with a unique leader,
any computable predicate by a population protocol can be computed with
O(nlog® n) expected interactions.

Theorem 2 ([4]). For any predicate P definable in Presburger’s Arithmetic,
and for any ¢ > 0, there is a probabilistic population protocol with a leader
to compute P without error that converges in O(n log® n) interactions with

c

probability at least 1 —n~°.

As a reminder, those predicates correspond to boolean combinations of:

— Threshold Predicate: Y a;x; > b, with ay,...,a,,b € VASES
— Modulo Predicate: Y a;x; = blc], with aq,...,an,b,c € Z"2.

where x; corresponds to the number of agents with input ¢ € Y. This also
corresponds to semilinear sets.

Corollary 1. Any predicate definable in Presburger’s Arithmetic is in CPPL.
Proof. We use the two following facts:

— The Leader Election can be performed in O(nlogn) (see Example 1).

— Any predicate definable in Presburger’s Arithmetic can be computed in
O(nlog® n) expected interactions (see Theorem 2), as long as there is a
single leader.



Each agent stores the smallest identifier it has heard about in its Leader slot.
It links its internal clock to the leader: if it meets an agent storing a smallest
identifier, it acts as if its own clock was at 0, and performs the interaction with
the other agent accordingly. Hence, each agent will act as in the protocols of
[4] as soon as it hears about the right leader’s identifier (in [4], agents start
their role in the computation as soon as they get instruction from the leader,
or from someone who transmits leader’s instruction through an epidemic).

4 Some Computable Protocols

We are now able to introduce some probabilistic protocols, including a complex
one that encodes the size of the population. Let first introduce the following
notion:

Definition 5 We will often talk about Next and Previous. Those are two
functions U — U that provides, to a given identifier, the next one/previous
one present in the population. More formally:

— Next(id,) = min{idy : idp > id,}.
— Previous(id,) = max{idy : idp < id,}.

By convention, Next of the highest identifier is the smallest, and Previous
of the smallest identifier is the highest one. Thus, these two functions are
bijective.

Sometimes, Next and Previous will be slots in protocols, with the purpose
to find the right identifier corresponding to the function. ”Finding its Next”
means that the agent needs to put the right identifier in its slot Next.

4.1 From Monte Carlo to Las Vegas Protocols

We considered in the previous section Monte Carlo protocols (i.e. protocols
having eventually a probability of failure). We accept that the protocols might
have some probability of failure, as long as we can minimize it as much as
needed (we use the same bound of 1 —n~¢ as in [4]). Those protocols alone do
not compulsory compute any set.

We provide in this paper Monte Carlo descriptions of the protocols. We
consider that the protocols also run in parallel a Las Vegas protocol providing
the right output with probability 1 (the corresponding Las Vegas protocols
exist, as a consequence of Theorem 1). The protocol detects, as in [4], when the
Las Vegas protocol should have finished to find the output. At this point, each
agent switches its output from the Monte Carlo protocol’s to the Las Vegas
protocol’s. With probability at least 1 — n™¢, this will not change the output.

Here is a small result to justify that we can transform our protocols
presented in this paper in Las Vegas ones by multiplying the expected number
of interactions by n?:

Proposition 3. Let be a population where all agents has found their Next
(see definition 5). There exists a protocol that simulates an epidemic spread
from an agent taking O(n3) expected interactions, with a success of probability
1. In the new protocol, the agent meets all the other ones in the population.



Proof. We suppose that all agents have already found their Next, and we
suppose all agents know the leader’s identifier, being the smallest identifier in
the population. The agent needs to meet the leader, then remembers the Next
of the leader, meets it, remembers its Next... until it finds the agent having
as Next the leader’s identifier. At this point, the agent has met all agents in
the population.

Each step takes % expected interactions, and we have n steps. Hence,
this protocol takes O(n3) expected interactions to derandomize the epidemic
from the initial agent.

Finding each Next needs at most O(n?logn) expected interactions (which
corresponds to the number of interactions expected before every possible
interaction has occurred at least once). Detecting when an agent found a
new Next is easy: the corresponding agent goes to find the leader to give the
information. This latter then resets its computation, spreading the information
as in the previous proof. With probability 1, at some point, all agents will
have found the right Nezt and the leader will then reset for the last time the
computation.

We will also use some protocols of [4]. Even though some parts use only
epidemics, others are trying to detect when something has finally occurred (for
example, detect when some state no longer appears in the population). When
our Las Vegas protocol will run this detection, it will iterate the epidemic part
until it detects the desired fact. In [4], those elements are proved to happen
with high probability in a single epidemic. Hence, our expectation will not
grow here.

We can prove that this protocol takes at most O(n? logn +n?logn +n3) =
O(n?) expected interactions to reset for the last time the computation. Then,
we add a factor of n3 to the expected number of interactions taken by the
Monte Carlo protocol to make it Las Vegas.

As the Monte Carlo protocol fails with probability at most n~¢ and that
the expected number of interactions of the Las Vegas protocol is polynomial,
the parallel expectation is still polylogarithmic.

4.2 The Size of the Population

The purpose of the following section is to find a way to compute the size of the
population. As each agent can only contain a finite state, each agent will store
one bit, and the logn first agents (according to their identifiers) will ultimately
have the size written in binary when you align their bits according to their
order. This way to encode an input size was also used in [9].

The protocol uses a sub-protocol that computes the median identifier of a
given subset of agents. Used on the whole population, we get the first bit of
the size (depending on if we have the same number of identifiers bigger and
smaller to this identifier or not). We can then work on half the population. We
iterate the protocol on the new half to get a new bit and a new half.

Theorem 3. Finding the median identifier can be done in a polylogarithmic
number of parallel interactions. The median identifier is the identifier Med



such that:

|{id : id < Med}| — |{id : id > Med}| € {0,1}

Proof. We will give an idea here of the protocol. A better description can be
found in the appendix.

The protocol works by dichotomy. It keeps and updates two identifiers Min
and Max that bounds the median identifier. Here is a quick description of the
steps of the protocol:

1. We initialize Min and Mazx by finding through an epidemic the smallest
and the highest identifier present in the population.

2. The leader takes at random an identifier Cand in |Min, M az], by picking
the first identifier in the interval it hears about (spreading the search of
such an identifier and the reception takes two epidemics).

3. The leader performs the predicates |<cand — T>Cand] = 0, |T<cand —
Tscand] = 1 and |T<cand — T>cand| > 2, using protocols from [4] (see
Theorem 2), where T<cang is the number of agents with an identifier
smaller or equal to Cand and xscang is the number of agents with an
identifier higher than Cand.

— If the answer is True for one of the two first predicates, Cand is the
median identifier. The algorithm is over.

— If the answer for the third predicate is True, we have Min < Cand <
Med < Max. We replace Min with Cand and go back to Step 2.

— Else, we know that Min < Med < Cand < Max. We replace Max
with C'land and go back to Step 2.

We prove in the appendix that there is a probability greater than i to
divide by % the number of identifiers in the interval |Min, Max| after one
loop of the algorithm. This permits to conclude that this algorithm will take
O(logn) expected iterations.

Each iteration using O(n log® n) expected interactions, we get that this
protocol is in CPPL.

The previous protocol will be used as a tool to write the size of the
population on the logn first agents. It still work on any subset of agents.

Theorem 4. There exists a protocol that writes in binary on the first logn
agents the size of the population.

Proof. To build this protocol, we first adapt the previous one as follows:

— The Median protocol can be used on a segment:
Instead on working on the whole population, we accept to launch it with
two identifiers A and B. We will look on the median identifiers among
those who are in [A, BJ.

— The protocol needs to check if the number of agents in the segment [A, B|
is even or odd. This corresponds to check if [{A < id < Med}| — |{B >
id > Med}| is equal to 0 or 1.

Each agent stores a bit Size set to 0. The bits of the size are computed
from the right to the left as follows:



1. Let min (resp. max) be the smallest (resp. higher) identifier present in the
population. We initialize A and B with, respectively, min and mazx.
We also initialize an identifier C' to min, it will represent the cursor pointing
to which agent we write the bit of the size of the population when it is
computed.

2. We compute Med, the median agent in [A, B], and write the parity on the

bit Size of agent C.
. We update the identifiers as follows: B «+— Med, C <+ Next(C).
4. If A # B, we come back to step 2, else the computation is over.

w

When this protocol is over, we have

logn

7 .
n= E 2'Size Neati (min)-
i=0

where Sizencqti(min) 1S the bit Size of the (i + 1)th agent.
The Median protocol will be iterated exactly logn times. This concludes
the proof.

5 Impossibility Results

In this section, we provide two results that motivate the idea that the population
cannot take into consideration precisely the sub-words in the population (and
hence, focus locally on the input). More precisely, only a polylogarithmic
number of agents may know what there is exactly on their "neighbors”. It is
supported by the fact that only a polylogarithmic number of agents will know
the identifier next of their own (Theorem 5).

The proof that Linearly Local Languages (see Definition 6) are not in
CPPL (Theorem 6) is based on the fact that there is a pair of consecutive
identifiers such that, with high probability, the population will not be able to
differentiate them, as these identifiers will not appear in a common interaction
during the computation.

Theorem 5. Any population protocols needs at least 2 (n/n) expected inter-
actions until each agent has found its Next.

The proof is in the appendix.

We bring now another impossibility result. We show that Community
Protocols cannot link a linear number of consecutive identifiers in CPPL. To
prove this, we introduce a new class of languages:

Definition 6 Let uw = uy...uy a word of size N and i < N. We call o;(u)
the word w where the ith letter is permuted with the next one. More formally,
we have:

O'Z‘(’U,) =Up .. - U—1Uj41UUj42 - - - UN

We say that a language L is Linearly Local if there exists some o €]0, 1]
such that, for any n, there exists some u € L and some I C N such that:

u=wuy...uy with N >mn,3I C[I,N —1], |I| > aN and for alli € I,
oi(u) &€ L.



These languages are said linearly local as, for any size of input, we can find
words that have a linear number of local regions where a small permutation of
letter leads to a word not in the language.

Theorem 6. There is no linearly local language in CPPL.

To prove this result, the idea is to prove that for any protocol, and for any
n, there exists some v in the language of length at least n and ¢ € I such that
there is a high enough probability that the protocol acts the same way on the
inputs v and o;(u).

Let o < 1, and let (I,,)nen be a sequence such that, for any n € N, we have
I, C [1,n] and |I,,| > an.

We work on pairs (Id;, Id;+1)icr,. We want to prove that, for any n, there
is some i € I,, such as, with high probability, the identifiers Id; and Id; 1 never
appeared in the same interaction after any n-polylog number of interactions.
In the proof, Id; meets Id;11 means both identifiers appear in the slots of two
interacting agents when the interaction occurs.

To prove that, we first introduce the 3 following lemmas. The proof of the
two first ones can be found in the appendix.

Lemma 1. Let f a n-polylog function and let a > 0.

To each identifier id, we define the set E;q and value M;q as
E;q = {Agents having had id in one of its register after f(n) steps} and M;q =
|Eql.

There exists some polylogarithmic function g such that, for n large enough,
after f(n) steps:

E({id: Mia < g(m)}) > (1= 3 )n

With this first result, we deduce that at most a small fraction of the pairs
(Id;, Id;+1) could have met after n-polylog number of steps. This means that
Id; and Id;11 never appeared in the slots of two agents that interacted together,
when they interacted.

Lemma 2. Let f be a n-polylog function. For n big enough, after f(n) steps:

3
E(|{i € I,, : Id; and Id;+1 were in a same interaction}|) < 1om

Lemma 3. Let f be a n-polylog function. For any n large enough, there exists

i € I, such as:

Pr(Idl met Idi+1) S Z

Proof. Let suppose that for any 4, Pr(/d; met Id;y1) > %.

That implies, E(N) = Y Pr(Id; met Id;41) > 3an.
i€l,
This is a direct contradiction of the previous lemma.

To prove our theorem, we need to prove the following proposition:



Proposition 4. For any protocol, for any n-polylog function f, for any input
of size n large enough, there exists some i € I, such that the probability that
the identifiers Id; and Id;+q never appeared on a same interaction after f(n)

steps is greater than i.

This proposition is a direct corollary of previous lemma. With this proposi-
tion, the proof of Theorem 6 can be done as follows:

Proof. Let L be a linearly local language with parameter a > 0. Let P be
a protocol computing L in less than nlog™ n expected interactions for some
m € N.

Let choose n large enough to have the property of Proposition 4 with
f(n) =9nlog™ n. Let u be a word of size N > n such that the corresponding
I has a size greater than aNV.

We have, from Markov’s Inequality that :

Pr(number of steps to compute u < 9N log™ N) > %.

It implies that at least % of the sequences of configurations of length
9N log™ N provides the right output.

By applying the previous proposition, we obtain the existence of some i € I
such that the probability that the identifiers Id; and Id; 1 never appeared on
a same interaction after 9N log™ N steps is greater than i.

This implies that in at least i of the sequences of configurations of length
9N log™ N, Id; and Id; 1 were never in a common interaction.

Hence, if Id; and Id;;1 never appear on a same interaction, then P will
not see any difference between the two inputs v and o;(u).

Between the & of the sequences that provides the right output on these two
inputs, at least g are common (two sequences are here said to be common if
the sequence of the interacting identifiers are equals).

As % >1- %, amongst those common sequences, some of them does not
involve Id; and Id;;1 in a same interaction. As the protocol cannot differentiate
those two inputs during those sequences, it cannot bring the right output.

This provides a contradiction. There is no protocol in CPPL that computes

L.

Corollary 2. The rational language (ab)*, the rational language of words not
containing the subword (ab), the well-formed parenthesis language and the
palindrome language are not in CPPL.

Proof. For the first language, to each n we can associate u = (ab)”, with a =
1/2. Same thing with the third one, replacing a with the opening parenthesis
and b with the closing one. For the fourth, (ab)™a works the same way. Finally,
for the second one, (bac)” and « = 1/3 works.

6 Set Considerations

We provide finally, in this section, set comparisons with CPPL. We first give
a large upper bound:

Theorem 7.

CPPL C NSPACE(nlogn) N U SPACE(nlog" n)
keN



The result is a combination of Theorem 1 with a lemma proved in the appendix.

We now provide a class of Turing Machines that computes everything we
found to be computable yet. This class of machines is capable of computing
global properties, through the ability to work on subsets of agents. It is capable
to compute the size of sets of agents. It can perform any polylogarithmic
number of steps of a regular Turing Machine.

This machines are capable of focusing only on a polylogarithmic regions of
agents. It motivates the belief that Community Protocols are not capable of
local knowledge on too much places.

Theorem 8. Let Mt a Turing Machine on alphabet I" recognizing the language
L having the following restrictions. There exists some k € N such that

— My has 4 tapes. The first one is for the input x.
— The space of work is restricted as follows:
o The first tape uses only the input space of |x| cells.
e The 2nd and the 3rd use at most a space of log |x| cells.
e The Jth uses at most a space of log" || cells.
— My can only do at most log” |z| unitary operations among the following
ones:
1. A reqular Turing Machine step.
2. Mark/Unmark the cells that have the symbol v € I.
3. Write in binary on the 2nd tape the number of marked cells.
4. Go to the cell of the number written on the 3rd tape if this number is
smaller than |z|.
Mark/Unmark all the cells left to the pointing head on the first tape.
. Turn into state 4" all the marked cells in state v € I.
Select homogeneously a random number between 1 and the number
written on the 3rd tape if this number is smaller than |z|.

Then we have L € CPPL.

S o

=

Proof. The proof is in the appendix. All the items are proved using previous
results.
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A Proof of Theorem 3

Here is a better description of the median identifier protocol.

As said, this algorithm is based on dichotomy. Let construct the following
recursive protocol that has as input two identifiers Min and Max and tries to
find med knowing that it is in |Min, Max|.

We do not provide a full description of the protocol but all the ideas to
build it. We first describe the d slots of identifiers. Each agent will also store
some bits also described bellow. We then describe the algorithm of the protocol.
We finally provide a lemma that proves that the protocol is in CPPL.

Each agent stores four slots of identifiers and three bits:

— Slot Leader containing the leader’s identifier.

— Slots Min and Maxz (that will be initialized in steps 0.1 and 0.2, before
launching the first time the dichotomy protocol).

— Slot C'and that contains the current candidate to be the median identifier.

— Bit C equals to 1 if and only if the agent’s identifier is in |Min, Max|.

— Bit D equals to 1 if and only if Cand is the candidate identifier selected
by the leader.

— Bit G that equals 1 if and only if the agent’s identifier is strictly greater
than C'and.

— Bit S that equals 1 if and only if the agent’s identifier is smaller or equal
to Cand.

To an agent with identifier id, its slot Slot will be written Slot;q and its bit B
will be written B;q.

We will not describe formally all the rules of the protocol but the essential
steps. Here are of the steps of the protocol (0.1, 0.2 and 0.3 are the initializing
steps):

Step 0.1 We start with a Leader Election using the smallest identifier as a Leader.
Each agent stores the leader’s identifier in its slot Leader and in its slot
Min.

Step 0.2 At the same time, the Leader performs an epidemic, each agent updating
its slot Max each time they see a bigger candidate.
We know that when the epidemic stops, each agent, with high probability,
knows the smallest and the biggest identifier present in the population.

Step 0.3 Every agents that are not Min and Max set their slot Cand to their own
identifier, put their bit C' to 1 and their bit D to 0.
Min and Maz put _ in slot Cand and set their bit C' and D to 0.

Step 1. The Leader looks for a candidate to be the medium identifier Med. For
this, it propagates an epidemic where each agent such that Cand = _ fills
it as soon as it meets an agent having an identifier with this slot filled
(putting it in its own slot).

Step 2. When the leader finds a candidate, it starts a new epidemic to spread the
candidate’s identifier to each agent. When an agent id; with D;q, = 0
meets and agent idy with D,q, = 1, it copies Cand,q, in its slot Cand,q,
and switches its own bit D,q,. Then it updates its bits G;q, and S;q,
(according to its relative position to the identifier Cand;q, ).



Step 3. The leader launches two protocols described in [4]. The first one decides if
>(Sia — Giq) € {0,1} and the second one decides if Y (S;qa — Giq) > 2.
id

id
Section 3.2 recalled that a subtraction can be performed in O(log®n)
expected epidemics.
Note that 3 S;q4 corresponds to the number of agents having an identifier
id
smaller or equal to slot Cand, and > G;4 corresponds to the number of
id
agents greater.
Step 4. According to the result, the protocol acts as follows:
— If >2(Sia — Gia) € {0,1}, slot Cand corresponds to identifier Med, the
id

pr(;tocols ends.
— If Y(Sia — Gig) > 2, we have Min < Cand < Med < Max. The
id

K3
Leader does an epidemic asking each agent to put identifier Cand in
their slot Min. Each agent checks if its identifier is smaller than Cand.
If it is the case, the agent updates C'and to _ and switches C' to 0, else
it updates Cand to its own identifier.
Then the Leader goes back to step 1.

— Else, we have Min < Med < Cand < Mazx. The Leader does an
epidemic asking each agent to put Cand in their Maz. Each agent
checks if its identifier is higher than Cand. If it is the case, the agent
updates C'and to _ and switches C to 0, else it updates Cand to its
own identifier.

Then the Leader goes back to step 1.

Lemma 4. The protocol described above finishes in O(nlog®n) expected in-
teractions.

Proof. This protocol finishes, as in each step, there is at least one less candidate
(formally, > Cyq is strictly decreasing after each passage in the loop). Each

id
loop uses a polylogarithmic number of epidemics (The decision problem defined
in [4] uses O(log® n) expected interactions).
Hence, we only need to prove that we have a polylogarithmic number of
loops in expectation.

Let ¢; be the number of agents such as C;3 = 1 after the kth loop.
We have ¢y = n and Vk, ¢ > cry1. We will show now that if ¢ > 1,
Pr(cps1 < 3¢) > 4.

We notice first that each agent having its bit C set to 1 has the same
probability to be chosen by the Leader, as each of these agents act the same
way. We will call Cand the identifier of the selected agent.

We assume that [{id : id < Med & Ciq = 1}| > |{id : id > Med &
Cia = 1} (the case < is symmetric). We have Pr(Cand < Med) > 1/2, as we
chose to focus on the case where the majority of candidates have a smaller
identifier than Med.

We now suppose that Cand < Med. Let M be the median identifier of the
subset {id : id < Med & C, = 1}. We have Pr(Cand > M|Cand < Med) >
1/2, as M is the median identifier among those smaller than Med.



In the case Cand > M, we have the following inequality on the number
candidates that will no longer be one:

[{id :id < M & Cjq =1}| > 3|{id : id < Med&Ciq =1} > 1 x 1|{id : Ciq =
1}| = %Ck.

Hence, if we have Cand > M, we have cp11 = ¢ — |{id : id < Cand &
Ciqg = 1}| < %Ck.

The expectation of the number of trials before we are in this case is less
than 4 (as we have more than half a chance to be inferior to Med and then
have again more than half a chance to be greater than M).

(3/4)ico < 1w iln(3/4) +Inn <0&i> 111173.

This protocol uses, in expectation, at most —ar Inn loops before finding

In4/3
the Med identifier.

This protocol uses O(n log® n) expected interactions to compute the median
identifier.

B Proof of Theorem 5

Let T be the number of interactions needed in a sequence of configurations
(Ci)ien to reach the point where all agents have the right Next. We define, for
each identifier id and each configuration C;, M;4(i) as the number of agents,
Previous(id) excluded, that had id written in one of its d slots of identifiers
in a configuration C; with j < i. We also define M;q = M;q(T).

We first define the following elements:

— E;4(i) = {idy € U : idy # Previous(id) & id has been in a slot of id; in a
configuration C; with j < i}. It corresponds to the set of identifiers where
id appeared in a slot, excluding Previous(id).

— M;a(i) = |Eia(d).

- Eid = Ezd(T) and Mid = Mz (T)

We first have the following lemma:

Lemma 5.
Z M;q < d(n+2T).
ideU

Proof. From a configuration C;, we define, for id € U, p;q(i) C U the set of
identifiers appearing in the d slots of id.

Let L;q(i) be the set of all of the p;q(j), with j < i (we have L;4(i) € 2(U),
P(U) being the set of subsets of U).

Let N;4(i) be the number of times id appears in each L;q4, () and N;g =
N;q(T). More formally:

Nig())= Y {p:id € p & p € Lig, (i)}

idp €U

Finally, let S(i)= > Y. |pland S= 3 3 |p|.

id€U pEL;q(1) 1d€U pEL;q



We have S(i) = > N;4(i), as each element of each set p is counted exactly
idelU

once in one of the N;4(7).

We also have N;q(i) > M;q(i), as, if idy € E;q, there is some p € L;q, such
as idp € p. We then also get N;q > M;g4.

Let Z(i) = > |Lig(i)| and Z = > |L;al-

ideU ideU

We know that for any p, |p| < d (each agent stores at most d identifiers at

a same time). From this, we get

SH< S S d=d Y |Lul)] = dZ().

id€U peLiq(i) ideU

We can notice that Z(0) = n and that for any ¢, Z(i + 1) < Z(i) + 2, as
an interaction can only add at most one element in the L(i) of the interacting
identifiers.

From this, we have Z(i) <n+2i et Z <n+ 2T.

We finally obtain > Mg < Y Nyg=8<dZ <d(n+2T).

ideU id€U

We consider now T as the random variable corresponding to the end of

the arrangement protocol (i.e. the first time where all agents know their Next
identifier), and let E(T) be its expectation.

Lemma 6. 1
E(Ty) > —
(Ty) 2 =
Proof. We work in the case where T' < 2E(Ty).
Let px be the probability that £ + 1 agents found their Next, supposing
that k agents have already found their Next.
As Previous is bijective and {id without Next} C {id € U}, we have

1
Pr = m Z MPrekus(zd TL — 1 Z M;q.

id without Next

By applying Lemma 5 and the hypothesis T' < 2 E(Ty), we obtain:

Dk < %(ML 4E(Ty)).

n(n—1)

We have E(Tt) > n, since the quickest way to end the protocol is by having

each agent meeting its Next directly. Hence, p < T 1)5IE(Tf)
n—1
1 1
Hence, B(T[T < 2E(T))) = %2 7 > z S = H-

In the general case, we have:
E(T) = Pr(T < 2E(Ty)) - E(T|T < 2E(T})) + Pr(T > 2E(Ty)) - E(T|T >
2E(Ty)).

Markov’s inequality provides the result that: Pr(T" < 2E(T})) >
we deduce:

1
5. Hence,



E(T) > Pr(I < 2E(T))) - E(T|T < 2E(Ty)) > fafat).

2

From this, we have E(T)2 > 2D > 2 This provides the final result:

Lemma 6 permits to conclude the proof of Theorem 5: the arrangement
protocol must take at least O(n+/n) expected interactions.

C Proof of Lemma 1

Proof. Let h be a function such as E(|{id : Miq > h(n)}|) > §n.
We suppose now to be in the case where |{id : M;; > h(n)}|
For each identifier id, we associate the set L;q C £ (U)

identifiers the agent id have had during the f(n) first steps.

Let S= 3. > [|p|. We want to prove that S > $nh(n).
ideU pEL;q
Let N;q be the number of occurrences of id in all the L;q, .

We have Njgy= >, {p:id€p& p€ Lig,}| and S = > Nig.
idycU ideU

We have N,;q > M, (an agent id appearing at least once in id, appears at
least in one of its lists). As we supposed M;q; > h(n) for at least an/2 agents,
we get S > §nh(n).

Our purpose is to get a lower bound of Z = > |L;4l.

idelU
We know that for any id € U and p € L4, |p| < d. Then,

S<> Y d=d> |Lig =dZ.

id€U p€L;q ideU

Hence, Z > $5nh(n).

Let Z; be the value of Z after i steps.

We have Zo = n and Z;1 < Z; + 2. Hence, n +2f(n) > Z > g5nh(n).

From this, we get h(n) < 24 (1+ 2 f(n)).

As f is n-polylog, h must be polylogarithmic.

If we chose h maximal matching our initial postulate, we get the expected
result:

n.
he list of

[N]fe)

>
of

[

E({id : Mia < h(n) +1}]) = (1- 5 ) n

D Proof of Lemma 2

Proof. For any j and k, let L;; be the random variable that is equal to 1 if
identifiers j and k appeared in a same interaction, 0 otherwise.

We will work on the number of pairs that interacted N = 3 L; ;11. We
ie]n

want to prove that the expectation of this variable is less than %om.
E(N)= > E(Liit1) = > Pr(Id; met Id;yq after f(n) steps)
1

i€l i€l



From Lemma 1, we deduce that from at least §n pairs, each identifier is
present on at most g(n) agents, as only at most §n identifiers appeared on
more than g(n) agents. Hence, for these pairs,

Pr(Id; met Id;,; after one step) < g(n)(gé")fl) : n(n2_1) < ,fzsln_)j)

n(n—1)

Let 8 > 1. The function I(x) = 2 is convex (as I"(x) = B(8 — 1)z°~2 > 0).
The convexity implies that [(z) > I(y) + ' (y)(z —y). With z = (1 — X) and
y = 1, we have:

1-X)>14+81-X—-1)=1-BX.

With X = n%;l—)i) and 8 = f(n) (as for n large enough, f(n) is always
greater than 1), we have the following inequality:

(1 _ gy? )f(") o1 fgm)?

f(n)
Pr(Id; met Id;yq after f(n) steps) <1— (1 1) ) :
)

n(n—1) = n(n-1) -

f(n)
Pr(Id; met Id;q after f(n) steps) <1 — (1 _ ng(;"_)j)> < %9_(’82.

As f is n-polylog and g is polylogarithmic, for n large enough, we have

fn)g(n)® 1
n(n—1) — 4°

If we sum these probabilities for the half number of pairs we considered,
we get the upper bound of ian = ¢n expected pairs that appeared in a same
interaction.

Even if all the pairs of identifiers of the not considered half of I,, met, the
upper bound for the second half provides the result:

]E(N)S% « 3

E Proof of Theorem 7

To prove this theorem, it suffices to prove the following lemmas:

Lemma 7. For any protocol in CPPL, there exists some K € N such as this
protocol is in SPACE(nlog™ n).

Proof. Any configuration can be described on a space O(nlogn) by writing,
for each agent, its state and the list of identifiers (using identifier 1 for the
first,...n written in binary for the last).

Let f(n) = nlog® n for some k being a function bounding by above the
number of expected interactions to find the output. We will prove that the
result holds considering K = k + 1.

The idea is to simulate all the sequences of configurations of length 3f(n)
(i.e. sequence of 3f(n) interactions).

With more details: We can write a sequence by providing the order of
the pairs that interacted. Hence, we need a space of 3f(n)logn to encode a
sequence on a Turing Machine. Going from one sequence to the next does not
require more space. We then just simulate the sequence of interactions on the
population. Finding, from a configuration, if it has an output or not does not
require more space.



For each possible output, we use a counter initialized at 0. Each time we
computed a sequence, if the configuration does have an output, we increase
the corresponding counter.

When all the sequences have been simulated, we provide the same output
that the one that got the highest counter.

From Markov’s inequality, we get that the probability to use more that
3f(n) interactions is less than one third. Hence, more than the half of the 3 f
sequences must provide the right output. The output of our Machine is the
same that the protocol’s.

This machine is deterministic and uses a space O(f(n)logn) = O(nlog"™' n).

F  Proof of Theorem 8

The protocol will write the 2nd and 3rd tapes on the first logn agents, the 4th
one on the first log® n agents. To initialize it, it will start by a leader election,
then will compute the size of the population (getting from this logn).

Let prove that the 6 items can be simulated:

1. It is easy, as the Leader only needs to know on which agent each lecture
head is. When the head goes left, the leader finds with an epidemic the
previous identifier (same when the head goes right with the next identifier).

. This one can be performed in a single epidemic.

3. It corresponds to the process described in Section 4 performed on the
agents marked.

4. Tt is a similar process to finding the median identifier, only we work:

(a) We keep two identifiers Min and Maz.

(b) We take a random agent Cand in |Min, Maz].

(¢) We compute the number of agents with identifier smaller than Cand.
(d) Either it is the right one and it is over, either we have an update of

Min or Maz. In the second case, we go back to step (b) with the new
interval.
We can see that this process will use a logarithmic number of loops in
expectation.

5. We perform an epidemic to mark all agents of identifier smaller of the
pointing head’s.

. Again, an epidemic is enough.

7. The leader identifiers the (z + 1)th identifier in the population. It then
spreads an epidemic to look for an identifier smaller or equal to this one, as
in the median candidate process. As in the median process, each identifier
has the same probability to be selected.

After than, the leader needs to count how many identifiers are smaller to
this one (his own excluded). The given number will be chosen in the right
interval according to a homogeneous distribution.
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